
Internal Reuse Breakout Session
Visualization Requirements Workshop
Bethesda, MD ~ June 2-3, 2003

Lead: Steve Parker
Scribe: Jim (a.k.a. Jeeembo) Kohl

Participants: Mike Papka, Mark Duchaineau

Basic Plan:

• Enumerate interfaces that viz tools need
o Data models, graphics, color maps, transfer functions…

• List those in existence
• List reasons they are deficient

Distinguishing Our Breakout vs. “External” Breakout?

• Fine line between internal modules and external tool protocols…

Graphics

• OpenGL ~ efficient, because it doesn’t deal with parallelism…
• Chromium
• DirextX/3D
• Volumizer
• Volumetric extensions to OpenGL
• Cg / Arb Shader…

Scene Graph ~ higher-level object management

• OpenRM
• OpenScenegraph
• OpenInventor
• Performer
• Java3D

GUI Toolkits

• Gtk
• Motif
• Glui
• Wxwindows
• Fltk
• Qt ~ warning: never use this…!

Viz Environments

• AVS
• OpenDX
• SCIRun
• VTK / ParaView
• Ensight

Data Models

• FM / FEL
• Silo
• GMV
• DMF (name not to be spoken)
• TSTT interface

I/O

• HDF5
• NetCDF

Data Management / Migration

• Htar
• Xftp
• SimTracker

Viz and Data Management often considered independently…

• This is a mistake. (SciDAC disconnect ~ SDM vs. Collaboratories)
• Viz often drives data management…!

Do we really want an “Über Data Format”?

• Perhaps not…
• Allow many distinct data formats with generic accessor interfaces…?

o Callback-type interface?

Common Internal Viz Interfaces ~ “Extractions”…

• Streamline integration (as in integrals)
• Color maps / transfer functions

o Color map representation ~ splines, bins, lines, gaussians…
• Isosurfacing
• Contouring
• Material Boundaries

• Particle to Field
• Slicing Planes / Dimension Reduction
• Resampling, Filtering
• Windowed Averaging / Smoothing
• Histograms, Contour Spectrum
• Statistical Analysis
• Topology Analysis
• Denoising
• Resource Management ~ memory, data caching…
• Feature Extraction / Tracking
• Transformations

o Geometric
o Wavelet
o Fourier

• Hierarchy Building
• Chunking / Tiling, and Other Reordering
• Compositing
• Shader Languages
• Level of Detail Management
• Sorting (Geometric)
• Scripting
• Line Graphs, Plots… ☺
• Data Calculator

o In support of a front-end user query language…
• Subsetting

These Areas Define the Universe…
 What are the REAL problems…?

IF all these modules existed, and were interoperable, would this make the science case
any better…?

Scientists want their customized, application-specific viz, with “5 buttons”…

• E.g. “heat transfer in automobile tires” button…
• Framework should be flexible to support a spectrum of people:

o High-Level Application Scientist / Viz Support Person
o Viz Developer
o Bleeding Edge Viz Researcher

What are the benefits of interoperability?

• Faster time to delivery ~ rapid prototypes
• Consistent “look and feel” across independent development

o A la Windows… you can guess what to do / how it works…

Are we covering all of the DOE science needs…?

• We mostly do big data simulations.
• Bio and info viz…?
• Particles as well as fields…?
• Representation Crossover: expand the horizons of application scientists…

o Provide simple solutions that the scientists want, but try to enable
evolution towards more sophisticated representations…!

The “Whole” Visualization Process Includes Data Analysis, Filtering, Processing…

• Starts from simulation output disk file, takes it all the way to final display…

